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We consider two types of strongly localized modes in discrete nonlinear lattices. Taking the lattice
nonlinear Schrédinger (NLS) equation as a particular but rather fundamental example, we show that
(1) the discreteness effects may be understood in the “standard” discrete NLS model as arising from
an effective periodic potential similar to the Peierls-Nabarro (PN) barrier potential for kinks in the
Frenkel-Kontorova model; (2) this PN potential vanishes in the completely integrable Ablowitz-Ladik
variant of the NLS equation; and hence (3) the PN potential arises from the nonintegrability of the
discrete physical models and determines the stability properties of the stationary localized modes.

PACS number(s): 03.40.Kf, 63.20.Pw, 46.10.+z, 61.72.Ss

I. INTRODUCTION

Many problems in the nonlinear dynamics of spatially
extended physical systems involve continuous media, so
that nonlinear coherent excitations (“solitons”) are nat-
urally described as solutions to partial differential equa-
tions. However, models describing microscopic phenom-
ena in solid-state physics are inherently discrete, with
the lattice spacing between the atomic sites being a fun-
damental physical parameter. For these systems, an ac-
curate microscopic description involves (a large set of)
coupled ordinary differential equations, and discreteness
effects may modify drastically the dynamics of the local-
ized, nonlinear excitations even in the framework of the
simplest models (see, e.g., Refs. [1]-[7] to cite a few).

Recently, interest in localized modes in anharmonic
lattices has been heightened by the identification of a new
kind of strongly localized mode in a homogeneous non-
linear lattice [3]. Since the lattice is without impurities,
this mode has been termed an “intrinsic localized mode”
in order to distinguish it from the impurity-induced lo-
calized modes well known in the linear theory of crystal
lattices (see, e.g., Ref. [8]). Properties of the intrinsic
localized modes have subsequently been widely discussed
in the literature (see, e.g., Refs. [9]-[18]). For the model
describing a chain of particles of equal masses m interact-
ing via harmonic (~ k2) and quartic anharmonic (~ k4)
forces, the highly localized nonlinear modes may be found
by a Green’s-function technique [3] or by a simple method
developed in [10]. The “Sievers-Takeno” (ST) mode pat-
tern is [3] un(t) = A(...,0,—3,1,—1,0,...) cos(wt), where
A is the mode amplitude and the approximation is better
for larger (k4/k2)A%. The mode frequency w lies above
the nonlinear cutoff frequency of the spectrum band,
and the particles oscillate out of phase with their near-
est neighbors, as one would expect for a high-frequency,
optical-type excitation [see Fig. 1(a)]. Another type
of a spatially localized mode was introduced by Page
[10], and the pattern of the Page (P) stationary mode
is; un(t) = A(..., §,—1,1,—¢,...) cos(wt) [see Ref. [18]
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for more details and Fig. 1(b) for the mode structure].
As has been recently proved in [18], the ST mode shows a
dynamical instability whereas the P mode has been found
to be extremely stable.

One of the principal problems in the theory of non-
linear localized modes is the description of their motion
or propagation through the discrete lattice. When mov-
ing along the chain, a mode changes its position and,
correspondingly, its structure. Comparison of the two
stationary localized modes shown in Figs. 1(a) and 1(b)
suggests that they are related by translations of 1/2 lat-
tice spacing and therefore they should both “occur” as
two “states” of a single mode transiting through the lat-
tice. Our present study confirms that these two sta-
tionary states can indeed be viewed as belonging to a
single localized mode and that the difference in their
energies may be attributed to an effective periodic po-
tential generated by the lattice discreteness and similar
to the “Peierls-Nabarro” (PN) potential for kinks in the
Frenkel-Kontorova (FK) model (see, e.g., [1]). The PN
potential, first discussed in classic papers on the contin-
uum theory (and corrections thereto) of dislocations [19],
reflects the fact that the discreteness of the underlying
lattice in solid state systems breaks the continuous trans-
lation invariance of a continuum model and generates a

(a) (b)

FIG. 1. Shapes of high-frequency localized modes in a non-
linear chain when (a) centered on a site and (b) centered
between sites. Note that in each case the mode shows the
out-of-phase oscillation of neighboring sites that is associated
with an opticallike excitation, as one would expect for a high-
frequency mode. Case (b) has lower energy than case (a).
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periodic potential which affects the continuum disloca-
tions. From the physical point of view, the amplitude of
the PN potential may be viewed as the minimum barrier
which must be overcome to translate the dislocation by
one lattice period.

Although this result holds for many different kinds
of localized modes and various nonlinear models, in
the present article we focus on the discrete nonlinear
Schrodinger (NLS) equation. We consider two variants
of this equation, the “standard” discretization and the
completely integrable Ablowitz-Ladik [20] version. To
motivate the specific choice of the NLS equation, we re-
call that the analytical approach used to find the shape
of the intrinsic localized modes in a lattice is based on the
so-called “rotating-wave” approximation, which assumes
that only the terms proportional to cos(wt) are taken into
account to derive the equation for the spatial structure
of the mode (see, e.g., [3,10]). Therefore, this approach
is based, in fact, on the single-frequency approximation,
for which an effective NLS equation may be derived in
the continuum limit [12, 13].

II. THE “STANDARD” DISCRETE NLS
EQUATION

We begin our investigation with the “standard” lattice
NLS equation

i%wn + K (Ynt1 + ¥n—1 — 2¢,) + /\|¢n|2¢n = 0. (1)

This equation has been widely used to describe self-
trapping phenomenon in a variety of systems, from vi-
bronic modes in natural and synthetic biomolecules [21,
22] to the dynamics of a linear array of vortices [23].
Equation (1) may also be treated as a special limit of the
discrete Ginzburg-Landau equation (see, e.g., [23]). In
Eq. (1) the parameter K can be viewed as the coupling
constant, and the anharmonicity parameter A describes
J

[ — 2K sin@sin q]2 = 4K sin® (%) cos q [4K sin?

for the wave number Q and frequency Q of the linear
modulation waves. Equation (4) determines the condi-
tion for the stability of a plane wave with wave number
g in the lattice. In contrast to the result in the contin-
uum limit, the stability depends on ¢, and an instability
region exists for Acosg > 0. For positive A and ¢ < 7/2,
a plane wave will be unstable to modulations in all this
region provided |1 > (2K/X).

A. Positive A and low-frequency localized modes

One of the main effects of modulational instability is
the creation of localized pulses (see, e.g., Ref. [24]). In
the present case this means that for A > 0 the small q re-
gion is unstable, and, therefore, nonlinearity can induce
the formation of localized modes below the smallest fre-
quency allowed for constant amplitude nonlinear excita-
tions given by (3). Such localized modes can be obtained
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the nonlinearity. We shall see below that the two dif-
ferent signs of the nonlinearity parameter A lead to two
different kinds of strongly localized modes, with A < 0
yielding high-frequency and A > 0 yielding low-frequency
modes.

Linear oscillations of the lattice (1) of frequency w and
wave number ¢ are described by the dispersion relation,
w = 4K sin®(q/2), with the lattice spacing taken as 1.
The spectrum lies in a band (0,wmax) which is limited
by the cutoff frequency wmax = 4K due to discreteness:
i.e., the lattice can support no oscillation of wavelength
shorter than its fundamental lattice spacing and wmax
is the frequency corresponding to these shortest wave-
length oscillations. The nonlinear oscillations of the lat-
tice model (1) may exhibit an instability that leads to a
self-induced modulation of the spatially constant state as
a result of an interplay between nonlinear and dispersive
effects. This phenomenon, referred to as modulational
instability, leads to the existence of inhomogeneous, lo-
calized states and is responsible for energy localization.

For the discrete or lattice NLS equation (1), the mod-
ulational instability is readily analyzed (see, e.g., [6]).
Equation (1) has an exact constant amplitude solution

Pn(t) = o  with 6, = qn — wt, (2)

where the frequency w obeys the nonlinear dispersion
relation

w = 4K sin? (%) — Abol? . (3)

The linear stability of the wave form given by (2) and
(3) can be investigated by seeking a solution of the form
Pr(t) = (Yo + by) exp(iby, + ixyn), where both b,, = b, (t)
and the differences Xp41 — Xn = Xn+1(t) — Xn(t) are
assumed to be small in comparison with the parameters
of the carrier wave. In the linear approximation, the two
coupled equations for these functions yield the dispersion
relation

(%) cosq — 2/\|¢0|2] (4)

directly from the lattice NLS equation (1) following the
method of Ref. [10]. We seek stationary solutions of Eq.
(1) in the form, ¢,(t) = Af,e”**, obtaining a set of
coupled algebraic equations for the real function f,,

Wfn + K(fas1 + fam1 — 2fn) + AA?f3 = 0. (5)

Based on our earlier remarks, we seek two types of
strongly localized solutions of Eq. (5), centered respec-
tively at and between the particle sites. First, we assume
the mode to be centered at the site n = 0 and take fo = 1,
f—n = fn, and |f,]| < f1 for |n| > 1. Simple calculations
yield the pattern of the so-called A modes [see Fig. 2(a)],

() = A(...,0,£61,1,£1,0,...)e "¢, (6)

where the parameter £&; = K/AA? is assumed to be small
(i.e., terms of order £? are neglected). The frequency
w in Eq. (6) is determined in the lowest order in &; to
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(a) (b)

FIG. 2. Shapes of low-frequency localized modes in a non-
linear chain when (a) centered on a site and (b) centered
between sites. Note that in each case the mode shows the in-
phase oscillation of neighboring sites that is associated with
an acousticlike excitation, as one would expect for a low-
frequency mode. For these modes, case (a) has lower energy
than case (b).

be w ~ —AAZ2, and it indeed lies below the lowest band
frequency.

The second type of the localized modes, the B modes,
may be found assuming that the mode oscillation is cen-

tered symmetrically between two neighboring particles
[see Fig. 2(b)],

&P (t) = B(...,0,62,1,1,£,,0,...)e ", (7)

where the values w and &, are defined as £, = K/AB? and
w =~ —AB2, respectively. Note that both these A- and
B-type modes show the “in-phase” oscillations of neigh-
boring sites that one associates with acousticlike modes
that occur at low frequencies.

If one imagines a localized wave form of fired shape—
for simplicity, think of a Gaussian—being translated
rigidly through the lattice, it is clear that when the peak
is centered on a lattice site, the symmetry is of the A
form, whereas when the peak is centered halfway be-
tween sites, the symmetry is of the B form. This obser-
vation motivates our ansatz that the A and B modes can
be viewed as two stationary configurations correspond-
ing to the moving mode at (different) fixed instants in
time provided that the amplitudes are adjusted properly.
To compare these amplitudes, we fix the discrete ana-
log of the integral of motion (V) having the sense of
“the number of particles” in the continuum NLS equa-
tion, N = Y |¢n|?>. The comparison of the integrals
N calculated for A and B modes gives the relations be-
tween the amplitudes A and B (to lowest order in the
small parameter £; = K/AA%),

A? =2B2% (8)

With this condition on A and B, we can interpret now
the two modes as stationary states of the same localized
mode. Using the relation (8), we may now calculate the
difference in energy between these two stationary states.
From the familiar expression for the energy of the lattice
NLS model,

H=—K [¢n(Shi1 — ¢}) + 5 (bns1 — bn)]

_%AZ |¢n|47

we find in the lowest order in the parameter &; the result
that

AEsp=Es— Ep=—1MA*"+ AB* = —1x4% #£0.

(9)

From (9) follows the important conclusion that there
is an effective energy barrier (the height of the effective
PN potential) between these two stationary states of the
lattice NLS equation, so that the A mode has lower en-
ergy than the B mode in this chain. Recalling our ansatz
that the A and B modes may be viewed as states of the
same moving localized mode, simply viewed at different
times, this result means that the motion of the nonlin-
ear localized modes will be affected by a periodic energy
relief. In particular, the velocity of the moving mode
should show oscillations, and, further, a localized mode
may be captured by the potential, or may be scattered by
it, emitting phonons.

B. Negative A and high-frequency localized modes

The above analysis of modulational instability in the
lattice NLS equation shows that, for A < 0, this instabil-
ity will occur for large wave numbers, namely for ¢ > 7 /2.
Thus, for negative A, localized modes in the lattice NLS
equation are possible with the frequencies lying above
the cutoff frequency of the nonlinear spectrum band (3).
Both the approach developed above and the main conclu-
sions remain valid for these high-frequency modes. Con-
sistent with the large wave numbers, these modes show
oscillations on the scale of the lattice and their structures
are found to be similar to the ST and P modes in a chain
with anharmonic interaction [see Figs. 1(a) and 1(b)],
ie.,

M (t) = A(..., 0, =11, 1, =11, 0, ...) e, (10)

and

¢S1.B) (t) = B(v O, —V2, 17 _13 Va, 07 "')e_Wt7 (11)
where v; = K/|\|A2, v; = K/|\|B2, and the frequencies
are w ~ 4K +|\|A? and w =~ 4K + || B2, respectively. All
the results for the high-frequency localized modes may
be obtained via manipulations similar to those in the
case of the low-frequency modes. However, this time the
result for the PN energy barrier is just reversed: AE4p =
Eas—Ep = 1|\|A%, i.e., the energy of the B mode is now
smaller than that of the A mode.

Note that the above analysis also determines the sta-
bility properties of the nonlinear localized modes: the
stationary localized mode corresponding to a local maxi-
mum of the PN potential will show an instability whereas
the mode corresponding to a minimum will be linearly
stable. This simple observation made on the basis of
the analysis of the PN barrier is in agreement with the
recent work by Sandusky, Page, and Schmidt [18], who
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have shown numerically and analytically (using other ar-
guments and not referring to the PN potential) that for
the case of interatomic quartic anharmonicity the ST lo-
calized mode [shown in Fig. 1(a)] is in fact unstable,
but the P mode [shown in Fig. 1(b)] is extremely sta-
ble. Exactly the same conclusion for the high-frequency
localized modes follows from our simple analysis. More-
over, the observation of intrinsic localized modes trapped
by discreteness [18] can be interpreted as trapping by
the effective PN potential. Thus the existence of these
two kinds of stationary modes, i.e., stable and unstable
ones, simply follows from the equilibrium points of an
effective PN potential for the localized modes, and this
phenomenon is rather general to be valid for different
types of nonlinear models.

1

III. THE ABLOWITZ-LADIK INTEGRABLE
DISCRETE NLS EQUATION

It is interesting to compare the results obtained for
the “standard” discrete NLS model (1) with those of the
completely integrable discrete Ablowitz-Ladik (ALNLS)
variant of the NLS equation [20] [cf. Eq. (1)],

igiz/)n + K (Pnsr + Y1 — 29n)

3N * (Yni1 + Yno1) =0. (12)
Although the models (1) and (12) have the same lin-
ear properties and lead to the same NLS equation in the
continuum limit, their nonlinear properties are very dif-
ferent. For the model (12), the dispersion relation for
modulations around the constant amplitude solution is

[Q — (2K + Ap2)sin Qsing]? = 4(2K + Mp?) sin?(Q/2) cos® g[(2K + Ap3) sin®(Q/2) — Ayg]

instead of Eq. (4). Therefore, for the ALNLS model, as
for the continuum NLS equation, the modulational insta-
bility does not depend on q. For Q < Q* determined by
sin®(Q*/2) = Mp2/(2K + M2), all the carrier waves are
unstable, while for Q@ > Q* they are all stable. As a
consequence, for a fixed positive value of A\, the ALNLS
model (12) can have simultaneously nonlinear modes lo-
calized either above or below the linear spectrum band.

A. Intrinsic localized modes

Solving for the A and B modes in the low-frequency
limit, we find the A mode to have the same form as Eq.
(6) but with the mode frequency given in the lowest or-
der by w = —2vVAK A2, whereas the B mode has pre-
cisely the same form as Eq. (7). To compare these two
types of the localized modes, we can use the integrals
of the ALNLS model, which may be found, for exam-
ple, in Ref. [5]. Comparing the A and B modes at the
fixed integral of motion N having again the sense of “the
number of particles” yields A2 = AB*/4K, and hence
AE s =FE4 — E = 4A\/K//\ —2B?% =0, i.e., the en-
ergy barrier for these two modes vanishes. This result
is a direct consequence of the integrability properties of
the ALNLS model which supports steady-state propaga-
tion of localized pulses—the “discrete solitons”—for any
relation between the model parameters A and K.

B. Perturbative calculation of the PN barrier

One of the simplest ways to calculate the shape of the
PN potential in the case of the “standard” NLS equation
is to use the integrable version of the lattice NLS equa-
tion, i.e., the Ablowitz-Ladik model, and to treat the
difference between these two models as a perturbation.
To do so, we rewrite the standard discrete NLS equation
(1) in the form

d
iawn + K(Ynt1 + Yn—1 — 295)

+EIA(nts + Yot)nl? = R(),  (13)

where
R("pn) = %)‘ l "/"n |2 (¢n+1 + ¢n~1 - 2"/’") . (14)

We start from the exact soliton solution of the ALNLS
model [20] at R = 0 which we take in the form

on(t) = sinh pexp [tk(n — z¢) + ia]

cosh [p(n — z¢)] ’ (15)
where in the unperturbed case du/dt=0, dk/dt= 0,
dzo/dt= (2/p)sinh pusink, and da/dt= 2[cosh(u) cos(k)
—1]. In Eq. (15) and the subsequent calculations related
to Egs. (13) and (14) we use the normalized variables
t = t/K and |¢,|%2 = (2K/))|¥n|?.

Considering now the right-hand side of Eq. (13) as a
perturbation, we can use the perturbation theory based
on the inverse scattering transform [25]. For the case of
the ALNLS model, the perturbation theory is elaborated
in [26]. According to this approach, the parameters of the
localized solution (15), i.e., y, k, a, and zo, are assumed
to be slowly varying in time. The equations describing
their evolution in the presence of perturbations may be
found in Ref. [26]. Substituting (14) into those equations
and applying the Poisson formula to evaluate the sums
appearing as a result of discreteness of our “standard”
model, we obtain two coupled equations for the soliton
parameters k and zo:

dilt()

o= %sinhu sink , (16)

dk 273 sinh? p sin(27zo)

dt pu3sinh(7w?/p) ’

(17)

and also du/dt = 0. In Eq. (17) we keep only the contri-

bution of the first harmonic because the higher harmonics

of the order s will always appear with the additional mul-

tipliers ~ exp(—m2s/u), which are assumed to be small.
The system (16), (17) is Hamiltonian, with

w2sinh? i cos(2mzg)
W smh(r2/p)

H=-— 2 sinh u cosk —
m
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where the parameters o and k have the sense of the gen-
eralized coordinate and momentum, respectively. The
first term is the kinetic energy of the effective particle,
the second one is a periodic potential, which is, in fact,
the periodic PN relief. For consistency with our pertur-
bative approach, we assume the difference between the
two models is small, i.e., the parameter u is assumed
to be small, so that the amplitude of the PN potential
defined as

72 sinh? p
U, —_— 18
PN = L sh(n /) (18)
is exponentially small in the parameter p~!. As we

can see, the dependence (18) and the periodic poten-
tial Upn cos(2mz) are similar to those in the problem
for the topological kink in the FK model [1]. As a result,
all types of motion of the effective particle are the same
as in the case of the FK kink, in particular, the nonlin-
ear mode may be trapped by discreteness, similar to a
trapping of a kink [1].

IV. CONCLUSIONS

In conclusion, we have analyzed effects of discreteness
on nonlinear localized modes in the lattice NLS models
that arise naturally when one studies the analogs of enve-
lope solitons in solid-state applications. We have pointed
out that the two kinds of the highly localized nonlinear

modes may be viewed as two different states of the same
mode being centered either at the particle site or between
two neighboring sites. This interpretation allowed us to
understand the numerical results on propagating local-
ized modes [16] and results of the stability analysis given
in [18]. In particular, we have demonstrated that the dis-
creteness effects on the nonlinear localized modes may be
understood as arising from an effective periodic potential
similar to the well-known PN potential for topological
kinks in the FK model. This PN potential also explains
the stability properties of localized modes; in particu-
lar, the results that the stable high-frequency mode is
centered between neighboring particle sites, whereas the
stable low-frequency mode is centered at a particle site.
Our analysis further suggests that the existence of this
PN-like potential is linked to the nonintegrability of the
“standard” NLS model. By studying the discrete inte-
grable ALNLS model we have been able to support this
suggestion analytically.
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